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ABSTRACT

The research area of imbalanced dataset has been attracted increasing attention from both

academic and industrial areas, because it poses a serious issues for so many supervised learning

problems. Since the number of majority class dominates the number of minority class are from

minority class, if training dataset includes all data in order to fit a classic classifier, the classifier

tends to classify all data to majority class by ignoring minority data as noise. Thus, it is very

significant to select appropriate training dataset in the prepossessing stage for classification

of imbalanced dataset. We propose an combination approach of SMOTE (Synthetic Minority

Over-sampling Technique) and instance selection approaches. The numeric results show that

the proposed combination approach can help classifiers to achieve better performance.



www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Recently, with the development of technology and science, data growths explosively, which

has proposed an enormous opportunity for data mining research since it has a broad range of

application from daily life to governmental decision-making system. In Knowledge discovery

and data mining area, problems are naturally divided into two categories, supervised learn-

ing and unsupervised learning. The essential difference between those two is that supervised

learning has a supervised respond variable, whereas unsupervised learning does not have any

respond variable rather only several input variables. Moreover, supervised learning are further

separated into two sub-classical problems, classification and regression problems, based on the

properties of respond variables. If respond variables are discrete or categorical, these are classi-

fication problems. Otherwise, if respond variables are continuous variables, they are regression

problems.

Typically, a classification problem is to classify previously unseen observations, which is

know as testing dataset by utilization of a classifier that is trained by previously given observa-

tions, called training data set. Several standard classifiers have been proposed to deal with this

type of problems such as logistic regression, discriminant analysis, and tree-based classifiers.

Simply, take decision tree as an example to clearly introduce the process of classification. Be-

fore introducing decision tree in detail, another essential concept needed to be introduced is the

error rate. It is widely utilized to evaluate the performance of a classifier. Regular accuracy is

a well-known error rate used in a wide area, that is, the sum of total misclassified observations

is divided by the total number of instances. Decision tree separates data space in an top-down

fashion by iteratively selecting the best attribute (or variable) so as to reduce the error rate.

Specifically, starting with the root node, in each iteration, a decision tree selects an appropriate

value of an associated attribute to split the whole data pace. As result, the error rate reduces
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largest in this iteration and that value of attribute is considered as a node. As the tree grows

up, the test error keeps reducing. If there is no restriction to the growth of a decision tree,

the decision tree would output a huge tree with a single data point in each note. That would

cause overfitting because the decision tree is constructed in training data set, while in realistic

application, we generally expect a good performance of a classifier in previously unseen data

set, which is test data set.

The overfitting scenario appears in various classifiers, specially for given data set is imbal-

anced data set. Simply, we consider binary classification problems. In imbalanced datasets,

number of minority class is dominated by number of majority class. As result, a classifier

classifies all data into majority class and almost ignores minority class. A lot of approaches

have been proposed to address this scenario. Sampling is a well-known prepossessing strategy

to improve the performance of classifiers. It tries to balance the distribution of classes by

oversampling or undersampling the number of minority class or majority class. On another

hand, modification of current standard classifier is also able to conquer this type of problems

such as support vector machine and boosting. We propose another prepossessing method that

is combination of oversampling and instance selection technique. Instance selection has been

widely implemented in machine learning area. It selects subset of training dataset in order

to remove superfluous instances and contain satisfactory accuracy. The selected subset allows

classifiers to have reduced time to learn and even have better performance.

The following organization of this thesis is divided into 4 chapters. A literature review

associated with nature of imbalanced datasets, well-known sampling methods, and popular

instance selection techniques will be covered in Chapter 2. Chapter 3 will introduce the formula

and pseudo-code of our combination method of SMOTE and Instance selection in detail. In

Chapter 4, several numeric results and comparison with other sampling and instance selection

methods will be presented. Finally, in Chapter 5, the conclusion and future research will be

given.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Issues of Imbalanced Data Sets

Generally speaking, any dataset can be considered as imbalanced dataset if the number of

observations between classes are not equal. However, the common understanding of imbalanced

dataset is that a dataset exhibits significant, and even extreme imbalanced. The imbalanced

ratio is about at least 1:10. Even though there are several cases of multiclass datasets, we in

this thesis consider binary ( or two-class) cases.

Preferably, given any dataset, we typically require a standard classifier to provide balanced

weighs of predictive accuracy for both minority and majority class. In practice, the standard

classifier tends to provide an extreme imbalanced prediction accuracy, minority class has accu-

racy usually less than 10 percent, while majority class has accuracy close to 100 percent(Chawla

et al., 2002). However, in application of imbalanced data set (Chawla et al., 2002), we expect

a classifier is sensitive to minority class as those are the class we are interested, even though

pay certain penalty to missclassify the majority class. Therefore, we prefer a classifier that

identifies most of minority observations, while remains relative high accuracy of majority class.

Further, regular accuracy as conventional assessment metrics does not provide enough helpful

information when dealing with imbalanced data set. More informational assessment metrics

are needed like Receiver Operating Characteristics curve.

The common understanding of imbalanced dataset in community is referred to as intrin-

sic imbalanced dataset, that is, imbalanced dataset is as result from the nature of the data

space.The domain of imbalanced dataset, however, is not restricted by just intrinsic variety.

Dataset can be considered as extrinsic imbalanced (He and Garcia, 2009) if it has time or stor-

age variables. By extrinsic imbalanced, the imbalanced is not directly as a result of nature of
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data space. For example, a continuous balanced data stream has been kept the training dataset

balanced for a while until during a time interval, the transmission has temperately interrupted,

then the acquired dataset can be possibly imbalanced. Figure 2.1 is an such example. During

time internal of 4.85 and 7.99, class 2 becomes minority class as the its data stream has been

temperately interrupted.

Figure 2.1: An example of extrinsic imbalance

In addition, relative imbalance and absolute imbalance are totally different concepts. Ab-

solute imbalance is due to rare observations, while relative imbalance is imbalance relative to

other class. For instance, a given dataset with imbalance ratio 1 : 100 contains 200, 000 obser-

vations. It is no doubt that the number of majority class dominates the number of minority

class. However, 2, 000 observations of minority class is not really rare. instead the number of

minority class is rare relative to the majority class. A number of papers have shown that the

minority class is not so hard to be identified for relative imbalanced dataset. (Batista et al.,

2004). These results are very suggestive. Hence, imbalance ratio is just one of factors hindering

classifiers. As a result, dataset complexity plays a critical role in classification deterioration.

Dataset complexity is referred to overlapping, and small disjucts. It is not uncommon

that a dataset with more than one classes has overlapping, that is, various class data overlap
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Figure 2.2: An example of within-class imbalance

in the neighborhood of decision boundary. In Figure 2.2, there are data points overlapped

between majority class which is circle and minority class which is treated as triangle. Moreover,

the minority class additionally contain a set of subconcept data points which are colored as

pure blue. This is referred to another situation of imbalance, within-class imbalance (Jo and

Japkowicz, 2004). The existence of within-imbalance is closely related with small disjuncts,

which greatly depreciate classification performance (Jo and Japkowicz, 2004). Interpretation

to small disjuncts is that a classifier is required to detect the minority class (or majority class) by

creating multiple disjunct rules that individually describes the specific subconcept of minority

class. For instance, removing all data of subconcept of minority class in Figure 2.2, a classifier

will generally and easily create a single large disjunct that cover a large piece of observations

associated with the main concept. However, because of the existence of minority subconcept,

the classifier instead is required to proved at lease two small disjuncts that individually covers

a specific data space of minority class. Moreover, noise can influence disjuncts of minority

class if considered as a small disjunct of minority class. Hence, the validity of data becomes an

essential issue, that is, whether a small disjunct corresponds to an actual subconcept of class

or are merely noise. In Figure 2.2, the two purple noise are misclassified as minority class.
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Combination of imbalanced data and small sample size is the a comprehensive issue asso-

ciated with imbalanced dataset. In realistic such as face recognizance, it is inevitable that the

number of predictors is far more than number of instances, i.e., p >> n. Thus, the first issue

related is, since the number of samples is pretty limited, all of issues associated with absolute

imbalance and within-imbalance is applicable. Second, it is harder for classifier to find a induc-

tive role to cover the minority class. Furthermore, the classifier goes to overfiting if generates

specific rule because of limited samples of minority class in specific data space.

2.2 Sampling Methods for Imbalanced Datasets

Technically speaking, sampling methods consists of modification on distribution of a imbal-

anced dataset. A number of studies have shown that a balanced dataset improves performance

of some base classifiers compared with imbalanced dataset (e.g. Weiss and Provost (2001),

Estabrooks et al. (2004)).

Oversampling with replacement modifies on distribution of data by appending observations

to minority class, that is, randomly selects minority observations in its original dataset with

replacement(Ling and Li, 1998). While oversampling increases the number of minority obser-

vations, undersampling removes observations from the training dataset. Concretely, randomly

remove a subset of majority observations from the original training dataset. Undersampling is

simple and has additional benefit such as reducing time consuming.

At first glance, those two sampling methods seems to be pretty much the same since they

both consist of modification on the distribution of data and focus on class distribution of data

space. However, this commonality is peripheral since individual method has its own negative

effect on hindering learning. In undersampling case, it is obvious that randomly removing

subset of majority class from the original data set probably results in the classifier to miss

important observations of majority class. This issue is relatively easy to solve if systematically

removing those majority class data instead. On another word, keep or select those impor-

tant instances from majority class that determining the decision boundary between the binary

class. Instance selection technique is capable to cover this issue by selecting those importance

instances and this technique will be deeply discussed in the latter section of this chapter. On
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another hand, oversampling with replicated instances literately not very comparable with un-

dersampling method because duplicated minority data make the decision boundary so specific

that cause base classifiers easily to go overfitting, even the training accuracy is very high.

A representative synthetic sampling method is synthetic oversampling minority technique,

which is so powerful technique that has been shown a great successful in varied studies of

imbalance datasets(Chawla et al., 2002). SMOTE generates synthetic samples of minority class

based on feature space instead of data space in randomly sampling methods. Concretely, take

each instance of minority class, xi, in original data set and compute its K nearest neighbors,

which is defined as the smallest Euclidian distance between itself and other minority data. To

generate a synthetic sample of minority class, randomly pick up one of the nearest neighbors,

x̂i, and calculate the p-dimensional feature difference vector x̂i − xi, assume the there are p

predictors in dataset. The new synthetic sample, xnew, is achieved by multiplying a random

numberδ between [0, 1], and finally adding xi:

xnew = xi + (x̂i − xi)× δ (2.1)

Therefore, the new synthetic data, xnew, is an instance that is along the line segment

between xi and xnew. This procedure has a potential benefit that does not cause necessarily

validity of the class which discussed in previous section. As the created synthetic data lies in

the line segment jointing xi and randomly selected nearest neighbor x̂i, it is more likely to be

the minority class instead of noise. SMOTE also has its drawbacks, such as overgeneralization

since generation of synthetic samples increases the occurrence of overlapping between classes

(He et al., 2008). Overgeneralization can be easily solved by instance selection since this method

only selects subset and best representative instances of data set.
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2.3 Instance Selection

Classification problem is to classify the previously unseen testing dataset based on a classifier

that is trained by a given training dataset T . In practice, however, a training dataset contains

useless information such surplus observations that are noisy or redundant. Hence, a process is

required that discards those surplus observations from a training dataset and groups the left

important observations as the final training data set S.

Typically, instance selection is to select subset of a training dataset such that the subset

S removes those surplus observations, in the mean while maintains the accuracy as the whole

training dataset. Instance selection methods basically start with either empty space (incre-

mental method) or whole space (decremented method) with entire data point from T . The

difference between those two is incremental method adds instances to T during the selection

process, whereas decremented method removes instances from S along selection.

Instance selection are similar to feature selection in term of strategies. We are able to

divide instance selection methods into two main categorical, wrapper and filter (Olvera-López

et al., 2010b). Wrapper methods select those subset instances based on the performance of

a predefined classifier, that is, those instances are discarded from T if they do not contribute

appropriate information for that classifier. Filter methods instead rank the instances in T based

on a non-classifier based function, then select the target subset from the ranking. Comparing

with wrapper methods, filter are faster, in the mean while deliver competitive accuracy and

retention, especially for processing medium or large data sets. However, wrapper methods have

broader utility than filter methods because of their classifier-based customizability.

2.3.1 Wrapper Methods

K nearest neighborhood (Cover and Hart, 1967) has been broadly used for various wrapper

methods. The earliest wrapper method is known as Condensed Nearest Neighbor (CNN). It

initially randomly selects a single instance belonging to each class in T and trains a classifier

using those two instances. After initialization, S combines those misclassified instances by

the classifier. As the number of instances are increasing, this kind of methods are known as
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incremental method. The Generalized Condensed Nearest Enighbor rule (GCNN) (Chou et al.,

2006) is an extension of CNN is . Basically speaking, GCNN and CNN are functionally

equal. However, GCNN introduces a concept of absorption and selects the target subset of

instances S based absorption and a predefined threshold. In selection process, the instance

p ∈ T would not be included in S if it is absorbed (or represented) by S, while its absorption

criteria is computed according to its nearest neighbor and nearest enemy (an instance from

different class). Specifically speaking, if |p − x| − |p − y| > δ, then the instance p would be

absorbed, where xy ∈ S are the nearest neighbor and enemy.

Another series of wrapper methods involved K nearest neighborhood are a set of methods

proposed by Wilson and Martinez (2000). DROP 1-5 (Decremental Reduction Optimization

Procedure)are decremental methods that introduce a concept of associate. For each instance p,

define its associates as a set of instances such that p belongs to their K nearest neighborhood.

Specifically, DROP1 starts with S = T and removes any instance p from S if associates of p

can be correctly classified without p. Hence, noisy instances are more likely to be discarded

since their associates are commonly classified correctly. On the other hand, if associates of a

noisy instance have been removed before its removing, the noisy instance will retain in S. In

order to conquer this issue, DROP2 extends the broaden the associates of p to whole S, that

is the instance p will be removed if all instances in S are correctly classified. DROP3 and

DROP4 similarly removes noisy instances firstly. If a instance is misclassified by its K nearest

neighborhood, this instance is considered as a noise and removed. After that, apply DROP2.

DROP5 is based on DROP2 but it removes nearest enemies so as to have smoother decision

boundaries.

In 2002, tabu search (Glover, 1986) was applied by Zhang and Sun for selecting the optimal

or close-optimal instances (solution). Tabu search starts with an initial set of instances ( an

initial feasible solution) Si ∈ T . In selection process, the nearest neighbor subset Sj of Si that

is subset differs from Si just one instance, is evaluated by a classifier trained from Si. Sj will

replace Si if it has better accuracy or performance for the classifier, otherwise, declared tabu.

After all iterations, the optimal solution is subset S. One characteristic of tabu search is that

in selection process any classifier can be used for selecting S.
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Evolutionary algorithm (Kuncheva 1995, and 1997,Bezdek and Kuncheva 2001, and Cano

et al. 2003) has the same characteristic as tabu search. The evolutionary algorithm generates

the the initial population of individuals (an initial set of instances). Initials are evaluated

by the fitness function (a classifier). Select the best chromosomes that maximize the fitness

function (in instance selection context, improve the performance of classifier) and undergo

mutation, selection, and recombination. Typically, a chromosome is represented as a binary

n-dimensional variable, C = [0, 1, ..., 1]T . Ci means the ithe element in training data set T ,

and is selected into the subset if Ci = 1. According to the requirement of user, the algorithm

is repeated several iterations (generations) and the last generation is selected.

2.3.2 Filter Methods

Unlike wrapper methods, filter methods determine an instance is whether discarded from

the training data set T based on the performance of predefined classifier.

In training dataset, any instance can be considered as either interior instances or a border

instance (or support instance). We assume that it is binary classification scenario, an instance

pi ∈ t is belonging to a border instance if pi ∈ C0 is one of the Knearestneighbors of an

instance from class C1. On another word, a border instance is an instance in the decision

boundary neighborhood. Besides border instances, the left instances are interior instances.

Hence, a number of filter methods have been proposed based on selection of border instances.

Raicharoen and Lursinsap (2005) proposed the POC-NN (Pair Opposite Class-Nearest

Neighbor) method that discards interior instances and selects border instances. In selection

process, POC-NN computes the mean of instances in each class, say m1 and m2. In order to

select a border instance, computes the distances of each individual instance pi ∈ C0 between

itself and the mean m2 of another class. The instance pb with the shortest distance is selected

as it is the nearest neighbor to m2. The border instances are also selected from class C2 based

on the same selection process.

Another filter method Object Selection by Clustering (OSC) was proposed by Olvera-López

et al. 2010a, which is not based on K nearest neighborhood, instead, utilizes Clustering instance

selection (Lumini and Nanni, 2006). OSC initially divides T into K subsets by clustering.
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Those subsets always have two categories, homogeneous and non-homogeneous. Several interior

instances in homogeneous subsets will retain in S if it is the nearest neighbor of the mean point

of that subset. In non-homogeneous subsets, those important border instances, p, will be

combined into S if p is the nearest neighbor of an enemy instance which belongs to a different

class.
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CHAPTER 3. METHODS AND PROCEDURES

3.1 SMOTE - Synthetic Minority Oversampling Technique

The use of sampling methods in applications of imbalanced datasets is composed of the

modifications of amounts of classes data in order to provide a balanced class distribution.

Chawla et al. (2002) proposed a powerful over-sampling approach called SMOTE, which stands

for Synthetic Minority Oversampling Technique. This approach has been widely cited and

obtain great successful when dealing with the applications of imbalanced datasets.

Before Chawla et al. give birth to SMOTE, several researchers proposed various sampling

approaches to conquer the problems of imbalanced datasets . Kubat et al. (1997) created their

own training datasets by selectively under-sampling the number of data points of majority

class while keeping the original population of the minority class. Under-sampling the majority

class enables better classifiers to be built. Another approach that is really relevant to Chawla

et al.’s work is from Ling and Li (1998). However, over-sampling the minority class with

replacement did not give them better classifiers than the under-sampling approach. Moreover,

a combination of previous two sampling approaches did not lead to classifiers that outperform

those built utilizing only under-sampling. Hence,Over-sampling the minority class doesn’t

significantly improve the recognition of minority class in terms of decision regions in feature

space. Essentially speaking, as the amount of minority class is increased by over-sampling with

replacement, the effect for classifiers is to identify similar and even more specific regions in the

feature space, even though the data space of imbalanced datasets has been modified.

SMOTE uses completely different method to over-sample the minority class, which operates

on the feature space rather than data space. Basically, SMOTE was designed to deal with

continuous (or discrete) variables. Given an imbalanced dataset, the minority class is over-
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sampled by taking each minority class instance and creating amount of synthetic samples

along with the K minority class nearest neighbors. The parameter N which is amount of

synthetic samples generated per original minority instance, and the parameter K related to

nearest neighbors need to be predefined. Typically, people uses N = 200% amount of over-

sampled samples and five nearest neighbors. For example, N/100 neighbors from the five

nearest neighbors are chosen, and one synthetic sample is generated in the direction of each.

Specifically, the procedure of generating synthetic samples consists of the following steps: Smin

is a set of minority class from ⊆ S, for each instance xi ∈ Smin, find its K nearest neighbors by

using Euclidean distance. To create a synthetic sample, randomly select one of the K-nearest

neighbors, calculate a feature difference between xi and its neighbor. Furthermore, multiply

this feature vector difference by a random number α ∈ [0, 1], and finally add this vector to xi

to get the synthetic sample xnew

xnew = xi + (x̂i − xi)× α (3.1)

where xi ∈ Smin is an instance of minority class in original population, x̂i is one of the K-

nearest neighbors of xi, and α ∈ [0, 1] is a real random number. Therefore, the new synthetic

sample based on (3.1) is a data point along the line segment between xi and the randomly

selected K nearest neighbor x̂i. The synthetic samples causes classifiers to create larger and

less specific decision regions for minority class. The algorithm 1 is the pseudo code for SMOTE.

Typically, STOME is a powerful technique proposed to conquer imbalanced datasets with

numerical variables originally. However, categorical (or discrete, nominal) variables arise in

a variety of application of imbalanced datasets. As we randomly pick one neighbor xiβ after

computing K nearest neighbors for instance xi, we could just allocate the nominal feature

value of that neighbor xiβ to the new synthetic sample. This is the easiest way to deal with

categorical variables. On the other hand, majority vote is another simple and straight strategy

for categorical variables, but implement more diversity into the algorithm. Hence, in the

processing of creating new synthetic samples, take majority vote between feature vector under

consideration and K nearest neighbors for the categorical feature values. In the case of a tie,

random choose. Based on this strategy, a variant of SMOTE (Chawla et al., 2003) are proposed
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Algorithm 1: SMOTE

Input: T :Training set; N : N% amount of synthetic samples ; k: Number of nearest

neighbors.

Output: S: Set of synthetic samples

1 begin

2 X ←− MinorityInstances(T);

3 n←− NumberOfInstances(X);

4 p←− NumberOfVariables(X);

5 S ←− ∅;
6 if N < 100 then

7 n←− (N/100)× n ; /* N% will be SMOTEd */

8 X ←− RandomSample(X, p);

9 N ←− 100;

10 end

11 N ←− N/100;

12 for i← 1 to n do

13 X̂i ←− KNN(i,X) ; /* Compute k nearest neighbor for i */

14 while N 6= 0 do

15 β ←− RandomeNumber(1, k) ; /* chose one neighbor of i */

16 for j ← 1 to p do

17 α←− RandomeNumber(0, 1);

18 Sij ←− Xij + (X̂iβj −Xij)× α;

19 end

20 N ←− N − 1;

21 end

22 end

23 return S

24 end
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and its pseudo code is Algorithm 2 below.

Algorithm 2: SMOTE with Categorical Variables

Input: T :Training set; N : N% amount of synthetic samples ; k: Number of nearest

neighbors.

Output: S: Set of synthetic samples

1 begin

2 X ←− MinorityInstances(T);

3 n←− NumberOfInstances(X);

4 p←− NumberOfVariables(X);

5 S ←− ∅;
6 if N < 100 then

7 n←− (N/100)× n ;

8 X ←− RandomSample(X,m);

9 N ←− 100;

10 end

11 N ←− N/100;

12 for i← 1 to n do

13 X̂i ←− KNN(i,X) while N 6= 0 do

14 β ←− RandomeNumber(1, k) ;

15 for j ← 1 to p do

16 if variable j is categarical variable then

17 Sij ←−MajorityV ote(X̂ij) ; /* compute categorical variable */

18 else

19 α←− RandomeNumber(0, 1);

20 Sij ←− Xij + (X̂iβj −Xij)× α;

21 end

22 end

23 N ←− N − 1;

24 end

25 end

26 return S

27 end
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3.2 Instance Selection

Given a training dataset, instance selection algorithm proposed allows classifiers to achieve

the same performance by only using the subset of the training dataset. The algorithm starts

with several candidate subsets including instances from the original training dataset. The first

candidate subset combines other desired candidate subsets by each iteration until combining

that candidate subset cannot further improve the performance of classifiers.

To construct final training dataset, each instance from original detests considered for in-

clusion in a greedy manner. Specifically, one instance is selected into the final training dataset

if including it improve predictive accuracy of the classifier. According to the manner, the in-

stance considered earlier should be given a larger chance to belong to the final training dataset

than the later ones. Hence, some of instances considered so late probably never get chance to

be selected, and the order really matters. In order to conquer this situation, we create one

candidate subset for each instance initially. Totally, we have n candidate subsets and every

instance is included in their own index candidate subset. Then we random sample instances

for each candidate subset until the size of each candidate subset meets the specified parameter

g. By doing that, each instance is selected in at least one candidate subset.

Processing imbalanced datasets with instance selection, we have another concern, that is,

regular accuracy usually highly score a classifier which focuses on majority class and underesti-

mates, sometimes even ignores minority class. Instead, we implemented Class Balance Accuracy

to evaluate the performance of classifier from candidate subset in each iteration. It is simple to

calculate, minority-sensitive, and reflect the performance of a classifier with a single number.

After a classifier performs, we can generate confusion matrix C based on the prediction result,

where each column of the matrix represents the instances in a predicated class, while each

represents the instances in an actual class. A typical confusion matrix as seen in Table 3.1 is

a table with two rows and two columns that reports the number of false positives (FP) , false

negatives (FN), true positives (TP), and true negatives (TN).

Here, the positive class represents minority class, while the negative class represents major-
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Table 3.1: Confusion Matrix

Predicted Positive Predicted Negative

Actual Positive True Positive False Negative

Actual Negative False Positive True Negative

ity class. The Class Balance Accuracy is defined as

CBA =

∑k
i=1

Cii
max(Ci.,C.i)

k
(3.2)

where Ci. =
∑k

j=1Cij and C.i =
∑k

i=1Cji.

Thus, the instance selection we implemented is algorithm 3 whose pseudo code is proposed

below. Note that after fitting the imbalanced dataset with the predefined classifier f , make pre-

diction and further calculate the accuracy based on the same training dataset for the classifier.

It could use a test dataset that would be separated before, but using training dataset works fine

because the limited number of minority instances, and the test accuracy would barely increase

in each iteration.
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Algorithm 3: Instance Selection

Input: T :Training set; f : A classifier; g: Size of candidate subset.

Output: S: Set of selected samples

1 begin

2 n←− NumberOfInstances(T );

3 Ŝ ←− CreateCandidateSubsets(n, g) ; /* n candidate subsets of g size */

4 Ŝ ←− InitialInstances(T ) ; /* initially assigne instances */

5 for i← 1 to n do

6 Ŝi ←− RandomSample(T, g − 1);

7 end

8 S ←− ∅;
9 currentAccuracy ←− 0;

10 for i← 1 to n do

11 fit←− FitModel(Ŝi, f);

12 predicted←− MakePredict(Ŝi, fit);

13 accuracy ←− ClassBalanceAccuracy(Ŝi, predicted);

14 if accuracy > currentAccurary then

15 S ←− S ∪ Ŝi;
16 currentAccuracy ←− accuracy;

17 end

18 end

19 return S

20 end
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3.3 Hybrid Classification Approach of SMOTE and Instance Selection

The proposed hybrid classification approach is inspired by SMOTE and Instance Selection,

and constitute of two stages. On the first stage, extract the minority instances from the original

dataset and take advantage of SMOTE method to increase the number of minority instances

in order to break the decision boundary of the majority class. On the second stage, using

greedy selection selects the representative instances from the combined dataset as the final

training dataset. After the prepossess, a regular classifier that fits the model by the final

dataset outperforms the other classifiers which use those two methods individually, at least has

the well performance as those two.

It is no doubt that SMOTE and instance selection are powerful methods to deal with

the imbalanced datasets. However, they have some drawbacks when implemented in varied

applications. Because of the curse of high dimensions, instance selection is not a appropriate

method for non-parameter classifiers if the number of predictors is large. Mechanism behind

instance selection is to select the representative instances that are near the decision boundary

between the two classes. Those are the key points to really separate the two classes, called

support points in support vector machines. Nevertheless, as the number of predictor increase,

the number of support points grows up, that means the points that near the decision boundary

are probably not near it anymore, and the set of selected instances is supposed to include

increasing number of instances in order to conquer the high dimensional scenarios. On the

other hand, as the number of minority instances is limited, and instance selection usually

selects less than ten percent instances from the original dataset, it is so hard to say the selected

instances are enough for a classifier to fit a appropriate model in order to detect the minority

class.

SMOTE (Chawla et al., 2002) initially proposed is usually working with under-sampling

the majority instances to get real balanced dataset as the final training dataset. By doing that,

it weaken the decision region of majority class, and allows a generic classifier to focus more

attention on the minority instances. However, the penalty is to miss classified the instances

of majority class and over fit the model for minority class. Even the number of instances in
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training dataset is increased, the overall performance of a classifier is probably not increase as

well because a majority of instances generated is duplicated.

The proposed approach is to flourish those two method and ease up their disadvantages by

modifying and combining the two. Given an imbalanced dataset, it is very significant to let a

classifier to be sensitive to the minority class. In order to make the characteristics and features

of minority class outstanding, oversampling minority class is an appropriate idea, as cannot

really grab anymore instance from the true density. However, oversampling with replacement

is just to make the decision region of minority class much more specific, that not really increase

the sensitiveness of a classifier. Instead, the fitted model only detects the specific decision

region and even miss classifies other general decision region of minority class. Hence, SMOTE

conquers this issue by randomly multiplying a parameter to the feature vector of over sampled

instances in order to change the feature spaces of the dataset, rather than modifying the data

space. That allows the minority class breaks their specific decision region and invades the

majority class border. We implemented a variant of SMOTE approach, Algorithm 2, to out

stand the minority class, because the original SMOTE is not able to deal with the categorical

variables. On the other hand, we did not under-sampling the instances of majority class which is

an importance step for SMOTE, because on the second stage, instance selection would perform

sort of step by offering a set of optimized instances from both class. Hence, we extracted only

the minority instances from the original dataset and implemented adjusted SMOTE approach

to increase the number of minority instances so as to broad the decision region of minority class.

For the purpose of avoiding fitted model that overfit the minority class, we kept a certain degree

of unbalanced when SMOTEd the minority instances. It is OK to do so, since if keeping very

balance is good for classifying those two class, implementation of instance selection latter would

take care of it and make them more balance when selecting the best representative instances

as final training dataset.

As discussed in previous descriptions, the number of instances of minority class is so limited

that most classifiers just consider them as noise, simply classify entire dataset into majority

class, and get high score of accuracy if regular accuracy is used as evaluation system. That is

part of reason why an evaluation system is one of the two critical parts for implementation of
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instance selection. We implemented Class Balanced Accuracy as the evaluation system that is

very sensitive to the minority class. To interpret the mechanism of Class Balance Accuracy, one

can just consider it as regular accuracy but puts more weights on minority class. For example,

given 100 points needed to be classified, 10 minority and 90 majority, a regular classifier could

only score 50 percent accuracy from Class Balance Accuracy if it classifies correctly all 90

majority class and miss classifies those 10 minority class. On the other hand, another classic

learner could get 65 percent accuracy if it correctly classifies 5 instances from minority class and

80 instances from majority class. Another critical part when implementing instance selection is

to choose an appropriate classifier or learner. The selected classifier is depended on the specific

dataset. As instance selection typically selects the instances that are best representatives

of the two classes, and creation of ideal decision boundary effects the accuracy of a generic

classifier, the best representative instances should come from the near neighbor of decision

boundary. However, the selected instances may be far away from the near neighborhood of

decision boundary in p-dimensional space when p is large, leading to a poor prediction and

a poor fit. As a general rule, parametric methods will tend to outperform non-parametric

approaches when there is a small number of observations per predictor. After SMOTEd stage,

the size of dataset has been increased by combining those synthetic minority instances, picking

a non-parametric classifier as the assess classifier offers a set of higher quality instance for a

generic classifier.

The pseudo code for the proposed combination approach is offered below, Algorithm 4. Note

that even though there is no a parameter for imbalanced ratio, it is controlled by adjusting the

value of N . There is a boolean variable assignment in line 5 of the Algorithm 4 which decided

whether under-sampling the majority class or not. In line 8, we implemented evaluation system

as Class Balance Accuracy, but it could be changed by client and various evaluation system

could be chosen and switched in order to get high quality instances for final training dataset.
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Algorithm 4: Combination Approach Based on SMOTE and Instance Selection

Input: T :Training set; f : A classifier; g: Size of candidate subset.

N : N% amount of synthetic samples ; k: Number of nearest neighbors.

Output: S: Set of selected samples

1 begin

2 S ←− ∅;
3 X1 ←− MinorityInstances(T);

4 X2 ←− MajorityInstances(T);

5 underMaj ←− False;

6 S ←− SMOTE(X1, N, underMaj); /* SMOTE */

7 S ←− S ∪X2;

8 Evaluate←− ClassBalanceAccuracy;

9 S ←− InstanceSelection(S, f,Evaluate, g); /* Instance Selection */

10 return S

11 end
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CHAPTER 4. RESULTS

We utilized one standard classifier decision tree to test the performance for our experiments.

We experienced on 4 well-known imbalanced data set in UCI datasets and one medical dataset.

The four UCI datasets are car (car3), segmentation (seg1), yeast (yeast5), glass (g7). The

number in the parentheses indicates the target class we choose. Table 4.1 shows the basic

characteristics of these five datasets organized based on their negative-to-positive training-

instance ratios.

Table 4.1: UCI and Medical Datasets

Datase # Attributes # Positive # Negative

g7 10 29 185

seg1 19 30 180

car3 6 69 1659

yeast5 8 51 1433

medical 7 208 2120

In each dataset, we used K-fold cross validation to evaluate the performance of classifier.

By rule of thumb, K is equal to the minimum between square root of n and 5, where n is the

number of instances in the dataset. After dividing the dataset into K fold, hold one of them

as the holdout or testing dataset, the rest of dataset generates training dataset. In order to

compare the performances, that training dataset are processed by four different procedures:

classic SMOTE, instance selection, hybrid, and control training set. After fitting the decision

tree model individually, we evaluate the performances of fits by predicting on the identical

testing dataset. We utilized regular accuracy, Area Under Curve (AUC), and Class Balance

Accuracy (CBA) to compare the performance of those four strategies.
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4.1 SMOTEd Training Dataset

Firstly, we use SMOTE to preprocess the training dataset and there are two parameters

we need to decide, percentage of over-sampling and percentage of under-sampling. Usually the

percentage of over-sampling is a multiple of 100 and number of generated synthetic minority

instances is the multiple of current minority instances in training dataset. On the other hand,

the remaining majority instances after under-sampling is the multiple of number of generated

synthetic minority instances, and the percentage of under-sampling is also a multiple of 100.

For example, given a training dataset with 10 minority and 100 majority instances, we set

both percentages equal to 200. Then, 20 minority instances will be generated and 40 majority

instances are randomly selected. In order to use an ideal SMOTEd training data set, we utilized

the K-fold cross-validation to select an appropriate percentage of over-sampling. The minority

class was over-sampled from 100% to 1000%, whereas under-sampling retains 200 percentage

as it depends on the number of synthetic instances. The selected setting of SMOTE should be

related to percentage of over-sampling with the averaged high AUC and accuracy.

Figure 4.1: ROC Curve of 10th fold of Yearst5

Figure 4.1 is an example of 10th cross validation ROC curve for yearst5 dataset. Based on

this curve, the SMOTE with 200 percent oversampling works best. We can pick the optimum

from the boxplot of AUC cross all percentages of oversampling.
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Figure 4.2: All AUC of Yearst5 Figure 4.3: All Accuracy of Yearst 5

In Figure 4.2, the optimum SMOTE should be within 100%, 200%, 500%, and 1000%. On

the other hand, it would be better if the selected SMOTE also has good performance on regular

accuracy. Hence, we also drawn a boxplot for regular accuracy. Compare with those two figures,

4.2 and 4.3, SMOTEs with 100% have good performance on AUC, but it is also the worst on

regular accuracy because overfit the minority instances. The exact averaged accuracy and AUC

values for those SMOTE are also listed in Table 4.2. In addition to metrics, computational

complexity is another significant factor to select the percentage of over-sampling. If the AUC

and accuracy are similar, picking a simpler setting for SMOTE would be stable and reduce

computing time. Thus, in this case, 200% oversampling is optimum since it has the highest

AUC and less complexity, even a little bit lower accuracy.

Table 4.2: Averaged AUC and Acc of Yearst5

Metrics 100 200 300 400 500 600 700 800 900 1000

AUC 0.828 0.866 0.768 0.822 0.825 0.856 0.805 0.819 0.809 0.798

Accuracy 0.794 0.847 0.850 0.853 0.883 0.863 0.863 0.871 0.882 0.880

Implemented this strategy to other datasets, Table 4.3 shows all optimum SMOTE cross

all datasets.

Note that for datasets g7 and seg1, the best SMOTE oversampling percentage is 600%

and 500 % respectively. Since they have 29 and 30 instances from minority class, 174 and
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Table 4.3: Optimum SMOTE of Datasets

Datase % Over Sample % Under Sample AUC Accuracy

g7 600 200 0.944 0.953

seg1 500 200 0.955 0.971

car3 500 200 0.969 0.929

yeast5 200 200 0.866 0.847

medical 200 200 0.631 0.784

150 synthetic minority instances will be generated and 348 and 300 majority instances will be

selected from training dataset. However, there are only 185 and 180 majority instances from

g7 and seg1. Thus, what the SMOTE does is select the required number of majority instances

with replacement. This does not heart SMOTE. On the other hand, it makes the better

performance of decision tree as they are the optimum from those datasets. Understanding the

SMOTE behaviors is simple. Minority class encroaches the decision boundary by generating

synthetic minority samples, while as response the majority class reinforce the decision boundary

though oversampling with replacement. As result, the decision boundary between those two

classes becomes clearer and easy to detect by decision tree.

4.2 Instance-Selected Training Dataset

This is pretty simple and straightforward. The nested assess metric was selected to use

CBA since it’s simple and sensitive to minority class. In addition, we divided the dataset into

100parts and each part was considered as subset candidate. As result, each subset candidate

includes 1% data from the whole training dataset. The setting is not optimum. The optimum

setting would be set the number of subset candidates equal to n, where n is the number of

instances in training dataset. In addition to have equal instances number of subset candidates,

optimum setting needs to assign every instance to its index-identical subset candidate in order

to make sure every instance is included at least one subset. However, the optimum setting is

really time consuming and in most case would not really improve the performance of classifier

a lot. Thus, we decided to simplify the strategy and the results showed it worked very well in

most case and reduced time complexity a lot. After decision of subset candidates, the instances
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in each subset will be combined if combination of those instances increases the performance of

the classifier. This process go among all subset candidates and output the selected instances

as the final training dataset.

4.3 Hybrid Selected Training Dataset

Hybrid has two stages of processing the training dataset by introducing and combining the

synthetic minority instances and select the best subset of training dataset from the first stage.

For selection and combination of the best subset, the strategy is the same as the Instance

Selection, dividing dataset into 100 subset and combining those subset if combination improves

the performance of classifier.

In addition to select best subsets, generation of appropriate number of minority class is

another significant part of Hybrid method. Because the imbalanced ratios and structures of each

dataset are different, there is no consistent oversampling percentage for minority class. Hybrid

method usually saves all majority class for further selection. On anther word, the percentage of

under-sampling is fixed. So finding an appropriate percentage of oversampling minority class

is very important. We utilized the same strategy as finding the optimum of SMOTE. As we

could generate very balanced dataset by oversampling minority class, we extended the level of

oversampling minority class. Besides oversampling percentage level from 100% to 1000%, we

added oversampling levels over 1000% until the dataset becomes very balance. For example,

there are 5 minority class and 100 majority class. For finding the optimum of SMOTE, we

set up oversampling minority class from 100% to 1000%. For finding the optimum of hybrid,

oversampling levels from 1100% to 2000% are also included since the dataset is very balance

if percentage of oversampling is chosen to be 2000%. In order to find the optimum hybrid,

the same assessment metrics that were used for best SMOTE were also implemented for best

hybrid, that is, AUC and accuracy.

Figures 4.4 and 4.5 show that AUC plot is fluctuated but has a increasing trend. In order to

pick up an appropriate point, comprehensive consideration about means and variances of each

level oversampling is essential. Plus, accuracy plot, Figure 4.5, is monotonically decreasing. It

seems there is a trade-off between AUC and Accuracy. That does make sense because based
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Figure 4.4: All AUC of Hybrid-based Med-

ical Dataset

Figure 4.5: All Accuracy of Hybrid-based

Medical Dataset

on ROC curve itself, it is the mechanism for any classifier that the higher true positive rate,

and the higher false positive rate. In anther word, the more classifier identifies the minority

class, the more misclassifies the majority class. Model complexity is another essential part

needed to be considered. We usually pick up the simpler one if both settings have the almost

identical AUC and Accuracy. For instance, in this case, we selected 1000% as percentage for

oversampling minority class, because it has very both high AUC and accuracy, and very stable

comparing with other settings. Based on the strategy to select the optimum of hybrid method,

all optimal hybrids are listed on Table 4.4.

Table 4.4: Optimum Hybrid of Datasets

Datase % Over Sample AUC Accuracy

g7 1600 0.931 0.949

seg1 500 0.864 0.867

car3 900 0.971 0.939

yeast5 3300 0.885 0.881

medical 1900 0.610 0.662
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4.4 Results

The original training dataset has been preprocessed by four different strategies, regular

SMOTE, instance selection, hybrid method, and control set. Then we got four different training

datasets, utilized the regular classifier, decision tree, to fit each individual training dataset, and

predicted the fit onto identical test dataset. We processed this steps over 100 times among each

datasets. For each dataset, we are able to evaluate the prediction through computing AUC,

CBA and accuracy.

4.4.1 CBA Assessment Metric

Firstly, we utilized assessment metric as nested metric for instance selection and first stage

of hybrid in order to select best subset of training dataset.

Table 4.5: CBA-based Evaluation for g7 dataset

g7 AUC CBA Accuracy # Minority # Majority

Control 0.917 0.868 0.934 5 148

Selection 0.500 0.607 0.607 0 6

Hybrid 0.924 0.899 0.934 10 7

SMOTE 0.924 0.899 0.934 35 60

Table 4.6: CBA-based Evaluation for seg1 dataset

seg1 AUC CBA Accuracy # Minority # Majority

Control 0.969 0.930 0.978 30 180

Selection 0.805 0.788 0.902 6 13

Hybrid 0.808 0.765 0.891 7 6

SMOTE 0.964 0.942 0.977 180 300

Table 4.7: CBA-based Evaluation for car3 dataset

car3 AUC CBA Accuracy # Minority # Majority

Control 0.785 0.675 0.856 13 1327

Selection 0.500 0.856 0.856 0 14

Hybrid 0.942 0.761 0.891 9 35

SMOTE 0.963 0.800 0.925 78 130



www.manaraa.com

30

Table 4.8: CBA-based Evaluation for yeast5 dataset

yeast5 AUC CBA Accuracy # Minority # Majority

Control 0.611 0.492 0.883 10 1146

Selection 0.500 0.875 0.875 0 12

Hybrid 0.766 0.709 0.890 23 49

SMOTE 0.823 0.633 0.842 30 40

Table 4.9: CBA-based Evaluation for Medical dataset

medical AUC CBA Accuracy # Minority # Majority

Control 0.567 0.668 0.717 41 1696

Selection 0.502 0.695 0.716 0 22

Hybrid 0.580 0.549 0.658 40 70

SMOTE 0.582 0.503 0.624 123 164

Based on the Tables from 4.5 to 4.9, best SMOTE method usually works best, while hybrid

method is also competitive and has smaller size of training dataset. On the other hand, instance

selection fails in many case because the classifier learning from instance-selection-based training

dataset classifies almost all instances to majority class and misclassifies all minority class.

4.4.2 AUC Assessment Metric

For instance selection based methods, nested assessment metric is very important. A

sensitive-minority assessment metric will be a good helper for a classifier to select most minor-

ity class, but not overfit. Since accuracy and CBA both assumes the cutoff value is equal to

0.5, the selected instances are not very comprehensive. However, AUC considers all possible

cutoff values. Hence, the selected instances should be more stable and comprehensive.

Table 4.10: AUC-Based Evaluation for g7 dataset

g7 AUC CBA Accuracy # Minority # Majority

Control 0.917 0.868 0.934 5 148

Selection 0.872 0.862 0.976 7 26

Hybrid 0.991 0.887 0.954 33 15

SMOTE 0.924 0.899 0.934 35 60

Based on the Tables from 4.10 to 4.14, those two instance-select-based approaches, instance
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Table 4.11: AUC-Based Evaluation for seg1 dataset

seg1 AUC CBA Accuracy # Minority # Majority

Control 0.969 0.930 0.978 30 180

Selection 0.959 0.926 0.977 67 15

Hybrid 0.965 0.929 0.975 49 51

SMOTE 0.964 0.942 0.977 180 300

Table 4.12: AUC-Based Evaluation for car3 dataset

car3 AUC CBA Accuracy # Minority # Majority

Control 0.785 0.675 0.856 13 1327

Selection 0.764 0.856 0.856 1 26

Hybrid 0.967 0.792 0.920 17 85

SMOTE 0.963 0.800 0.925 78 130

selection and hybrid, with AUC have better results than with CBA. Instance selection was to

assign all instance to majority class when it has CBA as nested assessment metric. As result,

it scores only 0.5 in AUC. In another word, it just randomly guess when assigning an instance.

When it applies AUC as nested assessment metric, it instead is able to correctly classifier some

minority class. In addition, the sizes of subset of instance selection and hybrid are increased.

For instance selection, increasing number of minority class make the fit to put more attention

on minority class rather than ignoring them. For hybrid approach, increasing numbers are for

majority class and some minority class, which make the decision boundary clearer. As result,

classifier has better performance. Specifically, hybrid approach allow decision tree has better

performance than SMOTE in term of AUC, but uses less number of instances. In addition,

Hybrid approach has competitive results in term of CBA and Accuracy. Thus, comprehensive

assessment metric like AUC is more appropriate as an assessment metric for instance-select-

Table 4.13: AUC-Based Evaluation for yeast5 dataset

yeast5 AUC CBA Accuracy # Minority # Majority

Control 0.611 0.492 0.883 10 1146

Selection 0.789 0.875 0.875 1 23

Hybrid 0.788 0.662 0.881 47 115

SMOTE 0.823 0.633 0.842 30 40
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Table 4.14: AUC-Based Evaluation for medical dataset

medical AUC CBA Accuracy # Minority # Majority

Control 0.567 0.668 0.717 41 1696

Selection 0.562 0.658 0.714 5 78

Hybrid 0.592 0.521 0.657 71 119

SMOTE 0.582 0.502 0.624 123 164

based approach. Furthermore, hybrid is very flexible because of its various setting such as

percentage of oversampling minority class, different assessment metrics, and even different

selection strategy.
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CHAPTER 5. SUMMARY AND DISCUSSION

We proposed hybrid approach to deal with imbalanced dataset. Hybrid approach is a very

robust and promising approach since it has varied settings. The numeric results show that hy-

brid is able to allow classifier has better performance than SMOTE and instance selection if set

up an appropriate assessment metric. In this thesis, we applied AUC and CBA. Furthermore,

hybrid approach needs less instances than SMOTE and way faster than greedy selection. For

greedy selection, over ninety percent of its computing time is occupied selection of suitable set-

ting such as the number of candidate subset and the size of candidate subset. Instead, we simply

separated individual dataset into 100 parts, each part is considered as a candidate subset, and

the instances retained in individual candidate are determined as the size of a candidate subset.

This simplification saves a lot of computational time but with hybrid it has better performance.

Comparing the evaluation of AUC-based and CBA-based, a comprehensive assessment metric

works better than non-comprehensive since comprehensive assessment metrics use all of the

cutoff value to evaluate, in the mean while non-comprehensive ones only use one cutoff value.

In future research, how to select an appropriate characteristic for hybrid is essential. Cross-

validation is a good method to select the ideal parameter like percentage of oversampling

minority class. However, filtering an ideal nested assess metric, or even good instance selection

approach is harder.
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